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Behaviour of the critical wavevector near a Lifshitz point 

R M Hornreichi and A D Bruce$ 
IBM Zurich Research Laboratory, 8803 Ruschlikon, Switzerland 

Received 8 September 1977, in final form 9 November 1977 

Abstract. Using scaling arguments, it is shown that, at a Lifshitz point, the exponent & is 
related to the crossover exponent 4 by & = v14/4. The exponents q14 and P k  are 
calculated for a uniaxial Lifshitz point to O(e;) ,  where el = 4 . 5 - d .  The results are 
q14 = - [ ( n  + 2)/4(n + 8)*]e: and Pr = 1+ [ 7 ( n  +2)/16(n + 8)2]c:. 

1. Introduction 

A Lifshitz point (Hornreich et a1 1975) is a multicritical point which divides a 
second-order phase transition ( A )  line into two segments, A1 and hz, such that on only 
one of them (Al) is the critical order parameter characterised by a fixed equilibrium 
wavevector. Approaching the Lifshitz point on the helicoidal or A 2  segment of the 
A -line, the magnitude of the critical wavevector k,(g) is expected to be asymptotically 
related to the non-ordering field g by (Hornreich et a1 1975) 

k&)-kL-(g-gL)Pk; g’gL. (1) 
Here, gL is the value of g at the Lifshitz point and kL= k,(gL) (henceforth taken to be 
zero) is the magnitude of the g-independent critical wavevector characterising the 
order parameter for g d gL. In this paper, we present scaling arguments relating Pk to 
the crossover exponent 4 at the multicritical point, together with Feynman graph 
calculations of Pk. We shall concentrate on an analysis of the uniaxial Lifshitz point 
(where the wavevector instability occurs in one dimension only) as this is expected to 
be the experimentally relevant case. Results for the isotropic Lifshitz point will also be 
reported, although these are likely to be of purely academic interest since it is believed 
that the phase transition in this case is of first order (Brazovskii 1975). 

2. Scaling theory at a Lifshitz point 

We denote by CL( and C L ~  the linear scaling fields (Fisher 1974) associated with the 
relevant temperature and crossover variables at a Lifshitz fixed point. Let us consider 
the two-spin correlation function G(r, S, k, q) ,  where S = g - gL and r = T - T, (S = 0), 
so that t = S = 0 defines the Lifshitz critical point. The vectors k and q are m- and 
(d - m)-dimensional wavevector components. The wavevector instability occurs in the 
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m-dimensional subspace only. The correlation function G can be written as a function 
of the scaling fields 

G(r, 6, k, 4 )  = CL69 k,  4) .  (2) 
Explicit renormalisation-group analysis (Hornreich er a1 1975) shows that d has 
homogeneous (scaling) properties such that 

d(Fr, @6, k, q ) =  a4-'If4&aAfpr, aAap6, ak, bq),  (3 1 
where u p  b are scaling lengths, and q4, At,  A6 are constants. Taking k = q = 0 and 
a = p gives 

(4a 1 - ( 4 - q I 4 ) / A t  * Gbr, k6, 0, 0) = p f G(1, d ( k : 6 / A ' ) ,  0, 0). 

Identifying y~ = (4 - ~ M ) / A ~  = (4 - 7 7 1 4 ) ~ ~  and 4 = A*/&, (4a) becomes 

e(/& p6, 0, o)=@;yfx(p6/p)6)* (4b) 
Now, although the k = q = 0 correlation function remains finite at the true critical 
points t, on the helicoidal segment of the A -line, we expect that it will at least carry the 
usual energy-type singularity (see, e.g., Aharony and Fisher 1973). Thus X ( x )  must be 
singular, at x = x say, where 

We next consider the k-dependent pair-correlation function at the true critical points 
(again on the helicoidal segment). We have 

G(fif, f i 6 ,  k, 0 )  
=a4-%4& ( ' ( f i S / x ) ' / " ,  aA8fi6, ak, 01 
= a4-qf4d((aA6fi6/x))"*, aA6fi6, ak, 0)= k-(4-"f4)Y(fi6/kA8),  (6) 

where the last expression is obtained by setting a = k-' and recognising that G is 
independent of & = k / k .  The function Y(y )  must have a singularity, at y = y  say, 
which determines the critical wavevector. We have 

F6lk:a = y, 
so that 

k,  - f i  
In general, we expect pr and @6 to be linear combinations of the physical fields t 

and 6. Writing 

6 = esps + etpt, 
we have from (5b)  at t = t ,  
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This will, in fact, prove to be the case of interest here. Note, however, that if 4 > 1 and 
et # 0, we have S - FA'* so that k , -  S 1 l A t  = 6"'" and P k  = V14. 

3. The self-energy 

For the uniaxial ( m  = 1 )  Lifshitz point, we shall consider the Landau-Ginzhurg- 
Wilson effective Hamiltonian (Hornreich et a1 1975) 

where uq is a Fourier component of the n-dimensional spin field, 

and 
d 

i=2  
G,' ( p )  = ro+4' + k 4 - g k 2 ;  4'= c 4 : ;  p = kr l̂ +q.  ( l o b )  

Note that the fourth-order term is taken to be isotropic. The critical dimensionality of 
this system at the Lifshitz point is do= 4 . 5 ,  and we shall calculate 7 7 1 4  and P k  to O(E: ) .  
where E I  = do - d. As usual (Wilson 1972, Wilson and Kogut 1974),  U will be set at the 
special value uoc (O(EI) )  required to expose the leading scaling behaviour (cf § 4 ) .  

Now, for t = 0, we expect the propagator to take the form 

G-l(t = 0, S, k,  q = O)=  k 4 - q ' 4 Z ( ~ f / k ' ' u ' 4 ,  b a l k A d ) ,  (1.1) 

where ki =pi ( t=O) ,  and Z(x, y )  is analytic in x and y. Since ha is linear in S, we 
expect, in the small S regime, to find terms in the graphical expansion of G-' that 
match the expansion of Sk4-"r4-A8 . Such logarithmic terms can be unambiguously 
distinguished from those resulting from the expansion of k4-qf4-(''u14) (which will also 
have O(S) contributions). 

To facilitate the graphical expansion, we write the propagator in the form 

G-'(t,6, k , q ) = r + q 2 + k 4 - g k 2 + Z ( r , g ,  k , q ) ,  ( 1 2 a )  

where, as usual, we introduce a renormalised mass r with the appropriate counter- 
terms included in the self-energy Z. It is convenient to choose r to give the inverse 
susceptibility at the Lifshitz critical point (where g = gL is O(E:)) .  We thus require 
X (r, gL, 0,O) = 0 so that 

G-'(t,S, k , q ) = r + q 2 + k 4 - g k 2 + Z ( r . g ,  k , q ) - Z ( ( r . g ~ , O , O ) .  ( 1 2 b )  

Since gL is O ( E : )  and we shall only calculate to this order, we may set gL = 0 in (12b) .  
Further, at t = 0, r = 0 (by construction), so to O(E:) ,  

G-'(0, S, k,  q ) =  4'+ k 4 -  gk2  +E (0, g, k ,  q)-X(O, 0, 0,O). ( 1 2 c )  

Now g = S + gL = S + O(E: ) .  Substituting in (12c ) ,  setting 4 = 0, and keeping only 
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terms to o(E:) finally gives 

G-'(O, 6, k,  O ) = k 4 - ( S + g ~ ) k 2 + @  (0, S, k,  0)-C (O,O, 0,O)) 

= k 4 - ( 6 + g L ) k 2 + X  (0,6, k ,  0)-X(0, S, 0,O) 

+ wavevector-independent terms. (13) 

Thus, to identify 7)14 and ha it will be sufficient to extract from Z(O,S, k,O)- 
C(0, S, 0,O) the terms proportional to k4 In k and Sk2 In k. 

C(0, S, k,  0) = - 32(n + 2)& 5 ddpz[(q: + k;)-' + 3Sk$ (4: + k;)-2]11(P2 + k i t ) ,  

To WE:, a), 

(2.n) 
(14a) 

where 

Since U is O(el), the integrals in (14a) and (14b) may be evaluated precisely at the 
critical dimensionality do= 4.5. The calculation is eased by choosing a cylindrical 
Brillouin zone in which we integrate ki from - A1/2 to + A1/2 and qi over the region 
0 < lqil < A2. In fact, since the integrals on qi (in do- 1 = 3.5 dimensions) that we 
encounter are ultraviolet convergent, we set A2 = 00. It then proves convenient to use 
the identity 

1 

(AB)-' = 1 da[(l -a)A (15) 
0 

Taking A = (41 f q 2 ) '  + (k l  + k2 + k)4, B = 4: + k':, changing variables from q1 to q ;  = 
q1+ aq2, and integrating over 0 < (4; I <CO, we obtain (Gradshteyn and Ryzhik 1965, 
No. 3.241.5) 

(16) 2 -1/4 +a(l-a)421 , 
where Kdl = 2d-1 .n d / 2  T(d/2) .  A detailed analysis of (14) shows that only terms in 11 
of the form A In [f(42, k2+ k)], where A is a constant, will result in contributions 
proportional to k4 In k and 6k2 In k in Z(0, S, k, 0). These can be found as follows. For 
k = 0, we define 

R = [ a ( k l  + k2)4+ (1 - a ) k !  +a(1 -ah$] - [k': + a k :  +a(l -a)q;] .  (17a) 

k': +ak$ +a( l -a)q$ SIRI, (17b) 

k': f a k :  +a(l-a)s$ =IRl. (17c) 

We now divide the kl integral in (16) into segments in which 

and define E1 = El(q2,  k2, a )  as the largest positive value of kl satisfying the equation 
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(If there is no such root, we set El = 0.) We have 

+ higher-order terms (18a)  
The terms we are seeking can come only from the first and third integrals in (18a) .  
Dividing these integrals into regions in which k:  Z ak; + a  ( 1  - a)q;, we obtain the 
relevant In term as 

I~(P~)== -(3&/32)&-1 ln ( k t  +qz) .  W b )  

Thus, we can obtain the k4  In k and Sk2 In k contributions of interest by considering 

Z(0, 8, k,  0 )  - Z(0, S , O , O >  

U 2  

(2T)d 
=3&(n+2) -K  - J ddp2[(k;  +q22)-' 

+ 3& (ki +q:)-2]{~n[(k2 + k)4 +q:] -In (IC: +&)I. (19 )  

Introducing new variables x and y by the transformation k2 = kx,  42 = k2y, we obtain 
from (19) 

Z(0, S, k,  0) - 2 ( O , S ,  0,O) 
A 1 / 2 k  

== (3&/2r ) (n  + 2 ) ~ ~ K i - l  J - / , ,  dx dd-lY [k4(X4 + y 7 - l  

+ 38k2x2(x4 + y 2)-2]{ln [ ( x  + 1)' + y2] - In ( x 4  + y ')I. (20) 

Clearly In k contributions can come only from the region in which x is large compared 
with unity. In this range, defining y = x2v,  x4 + y 2  = x 4 ( l  + U')= x 4 t ,  w = ( x  + q4 - x 4 ,  
we make the expansion 

In [ ( x  + 1)' + y2] - In (x4 + y 2 ,  

=In (1+ w / x ~ z ) =  w / x 4 z  - w 2 / 2 x 8 z 2 +  w ~ / ~ x ' ~ z ~ -  w 4 / 4 x 1 6 z 4 + .  . . . 
(21 )  

Collecting terms proportional to x - ' ,  we obtain the contributions we are seeking from 

W ,  8, k ,  0)- W ,  S,O, 0 )  

x lorn dv ~ " ' [ ( t - ~  - 3 4 ~ '  + 9 6 Y 4  - 6 4 ~ - ~ ) k ~  + 3S(62-' - 8Y4)k  '1. 

The remaining integrals are straightforward and yield 

C(0, S ,  k ,  0 ) - 2 ( 0 , 6 , 0 , 0 ) = & ( n  +2)u2KZ-l (k4 In k -86k2 In k ) .  (23) 
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4. Evaluation of the coupling constant 

In order to obtain the exponents 714 and & from (23), we must choose the correct 
coupling constant U = uoc to O(EI) .  This is done (Wilson 1972, Wilson and Kogut 
1974) by requiring that the n-point vertex functions have the scaling property 

T(")(p,, . . . , pn ; t )= [nb-(d-l)a-'r(n)(pl, . . . , pn; a 1 /Yi4 f ) ,  (24a)  

where pi are the rescaled momentum components. Setting the momenta to zero, 
a = t-'I4, and, to O ( E ~ ) ,  b = a 2 ,  l2 = a2d+3 (Hornreich er a1 1975), (24a)  becomes 

(24b)  

(24c 1 

r(n)(o; t )  ~ f- .~,4[(n-2)d+(3/2)n+11 

or, again to O(Q) 
r(nj(0; r )  ~ r-l(n-2)d+(3/2)n+ll/4 

Thus the amputated renormalised four-point vertex function should satisfy 

( 2 4 4  u R  E r ( 4 ) ( 0 ;  r)/(r(2)(o; r ) ) 4  =-; r-(*d-9)14 = r+ 

To determine uoo we match the expansion of (24d) ,  

U R  = constant ( 1  + $ E ,  In r ) ,  

to the result of the graphical expansion, 

U R  = uOc( 1 - 4u,,(n + 2 )  1 d$ ( r  + 4 + I c ~ ) - ~ ) .  (25b)  

Using the same cylindrical Brillouin zone employed in 0 3,  we obtain 

uoc = 2&,/3(n + 8)&-1. (26)  

5. The critical exponents 

Substituting (23)  and (26)  into (13)  and exponentiating gives 

G-'(O, S ,  k, 0 )  k4-"14 - Sk2-'+, 

with 

7114 = - [ (n  + 2)/4(n + 8)21~?, 

74 = - [2(n + 2) / (n  + 8)2]e:. 

Matching (27a)  to ( 1  l ) ,  we have 

For the isotropic Lifshitz point, a straightforward calculation yields 

The results cited in (27)  and (28)  are in agreement with those found independently by 
Mukamel (1977) for general m in a renormalisation-group calculation. In d = 3, 
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EI = 1.5 and substituting into (27) gives for the physically relevant uniaxial case 
TI4 = - 0.02 and P k  = 0.54 for n = 1 and 2. The corrections to the mean-field values 
(7714 = 0, P k  = t )  are quite small, indicating that it is unlikely that either v14 or ,& will 
differ significantly from its mean-field value in real systems. 
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